Начни свой день с десерта
Поиск по сайту

Редуцирующие дисахариды. Определение состава сиропа и количества редуцирующих веществ в нем Редуцирующие сахара

Для некоторых видов сырья требуется определить массовую долю редуцирующих сахаров. Этот показатель определяется во многом пищевом сырье, которое используется в производстве различных биологических активных добавок , выпускаемых нашим предприятием ООО «КоролёвФарм» . Редуцирующие (восстанавливающие) – это такие сахара, которые вступают в реакцию восстановления, т.е способные легко окисляться. Этот показатель также нужен для определения общего сахара в продукте.

Рис. 1 Проведение испытаний

Он также является важным для такого пищевого сырья как мед. Низкое содержание таких сахаров и высокое сахарозы свидетельствует о том, что пчел долгое время подкармливали сахарным сиропом. Таким образом, выявляют фальсифицированный мед, который называют сахарным медом.

В пищевых продуктах в основном содержатся дисахариды, в виде сахарозы, мальтозы, лактозы. Моносахара представлены глюкозой, галактозой и фруктозой, трисахариды встречаются в основном в виде раффинозы. Для пищевых продуктов по ГОСТам или ТУ нормируется в основном суммарное содержаʜие сахаров или так называемый общий сахар, выражаемый в процентах сахарозы. Все перечисленные выше сахара, кроме сахарозы, обладают редуцирующей способностью.

В Аналитической лаборатории ООО «КоролевФарм» на участке физико- химических испытаний этот показатель качества сырья определяется фотоколориметрическим способом. В основу положена реакция взаимодействия карбонильных групп сахаров с железосинеродистым калием, а затем определение оптической плотности растворов до и после инверсии на спектрофотометре.

Для проведения испытания готовим следующие растворы:

  1. железосинеродистого калия;
  2. метилового оранжевого;
  3. сахара стандартный раствор после инверсии.

Для приготовления (1) раствора берем навеску железосинеродистого калия равную 10 г, помещаем ее в колбу на 1000 мл, растворяем и доводим водой до метки.

Для получения (2) раствора берем 0,02 г реактива метилового оранжевого, растворяем его в 10 мл кипятка, охлаждаем и фильтруем.

Приготовление (3) раствора проводим так: берем 0,38 г сахарозы, высушенной в течение 3 суток в эксикаторе (или сахара - рафинада), взвешиваем с точностью до 0,001г, переносим навеску в колбу на 200 мл, добавляем воды 100 мл и 5 мл хлористоводородной кислоты. В колбу помещаем термометр и ставим в ультротермостат. Прогреваем содержимое колбы до 67-70°С, выдерживаем при этой Т0 С ровно 5 мин. Охладив содержимое до 20°С, добавляем одну каплю индикатора (2), нейтрализуем 25% раствором щелочи, смесь доводим водой до 200 мл и все тщательно перемешиваем. В полученном растворе содержание инвертного сахара 2 мг в 1 мл.

Для определения оптической плотности готовим ряд разведений стандартного раствора. Для этого берем 7 колб на 250 мл, в каждую из них помещаем по 20 мл феррицианида калия, 5 мл щелочного раствора с концентрацией 2,5 моль /мл. Затем вносим стандартный раствор в количествах: 5,5 мл; 6,0 мл; 6,5 мл; 7,0 мл; 7,5 мл; 8,0 мл и 8,5 мл. Это соответствует 11 мг, 12 мг, 13 мг, 14 мг, 15 мг, 16 мг и 17 мг инвертного сахара. Затем поочередно добавляем из бюретки воду соответственно 4,5 мл; 4,0 мл; 3,5 мл; 3,0 мл; 2,5 мл; 2,0 мл и 1,5 мл. В результате в каждой колбе объем становится равен 35 мл. Содержимое нагреваем и кипятим 60 сек, после чего охлаждаем и заполняем жидкостью кюветы. Измеряем показание оптической плотности каждого полученного раствора со светофильтром при длине волны светопропускания 440 нм. Для раствора сравнения используем дистиллированную воду. Измерения регистрируем три раз и вычисляем среднеарифметическое значение для каждого образца.

Рис. 3. Проведение измерений на спектрофотометре

На миллиметровой бумаге строим график. На оси ординат откладываем полученные показания оптической плотности стандартных растворов с определенным содержанием инвертного сахара, а по оси абсцисс эти значения концентраций сахара в миллиграммах. Получаем график, который нам будет нужен в дальнейшем.

Чтобы определить массовую долю сахаров до инверсии готовим навеску в количестве 2,00 г, помещаем ее в колбу на 100 мл и растворяем. Переносим 10 мл этого раствора в другую такую же колбу и доводим до метки (это рабочий раствор исследуемого вещества).

В колбу на 250 мл вносим 20 мл феррицианида калия, 5 мл щелочи (С= 2,5 моль/мл) и 10 мл приготовленного раствора. Нагреваем смесь и кипятим ровно 1 мин, затем быстро охлаждаем и определяем оптическую плотность на спектрофотометре. Измерение производим 3 раза. Вычисляем среднее арифметическое результатов.

Зная оптическую плотность, по графику находим массу редуцирующих сахаров в миллиграммах и вычисляем ее в процентах по формуле:

Х1= m1VV2/mV1V3 10

где m1 - масса редуцирующего сахара, найденная с помощью графика, мг.

V- объем раствора, приготовленного из испытуемой навески, см3;

V2- объем, до которого доводится разбавленный раствор, см3;

M- масса продукта, г;

V1- объем, взятый для разбавления раствора, см3;

V3- объем разбавленного раствора, который используется для определения, см3.

Восстановительный сахар является химическим термином для сахара, который действует как восстановитель и может пожертвовать электроны другой молекуле. В частности, восстанавливающий сахар является типом углеводов или натурального сахара, который содержит свободную альдегидную или кетоновую группу. Сокращение сахара может вступать в реакцию с другими частями пищи, такими как аминокислоты, для изменения цвета или вкуса пищи.

Видео дня

Различные типы сахара

Сахара встречаются естественным образом во всех фруктах, овощах, молочных продуктах и ​​цельных зернах. Эти природные сахара иначе известны как углеводы, существенные макроэлементы. Диетические углеводы классифицируются как моносахариды, которые являются молекулами одного сахара; дисахариды - две молекулы сахара связаны между собой; или олигосахариды и полисахариды, которые являются более длинными цепями молекул сахара. Моносахариды включают глюкозу, галактозу и фруктозу, которые все уменьшают сахара. Моносахариды нередко встречаются в природе по отдельности, но они являются компонентами дисахаридов и полисахаридов. По этой причине некоторые дисахариды, такие как мальтоза, также уменьшают сахара.

Примеры редуцирующих сахаров

Самым важным моносахаридом и восстановительным сахаром является глюкоза. В организме глюкоза известна как сахар крови, потому что она необходима для функции мозга и физической энергии. Фруктоза - еще один восстановительный сахар и известен как самый сладкий из всех моносахаридов. Галактоза, еще один восстановительный сахар, является компонентом лактозы, которая содержится в молочных продуктах. Мальтоза не часто встречается в природе, но она образуется во время пищеварения, когда молекулы крахмала разрушаются.

Реакция Майара

Реакция Майара представляет собой процесс, который возникает, когда восстанавливающий сахар реагирует с амином, что приводит к поджариванию пищи. Эта реакция обычно возникает, когда пища нагревается или остается при комнатной температуре в течение длительного периода времени. Процесс поджаривания проявляется на коре хлеба или на коже обжаренной индейки. Реакция Майара также способствует вкусу и аромату многих продуктов питания, таких как кофе, шоколад и печеный хлеб.

Невосстанавливающие сахара

Некоторые дисахариды, такие как сахароза, являются нередуцирующими сахарами, то есть они не могут пожертвовать электроны другим молекулам. Сахароза состоит из двух восстанавливающих сахаров, глюкозы и фруктозы и не содержит свободных карбонильных групп. Сахароза встречается естественным образом во многих пищевых продуктах и ​​часто добавляется во многие обработанные пищевые продукты, чтобы способствовать сладости.

На рис. 5.6 отмечены некоторые свойства дисахаридов. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами (рис. 5.14).

Связь между двумя моносахаридами называют гликозидной связью . Обычно она образуется между 1-м и 4-м углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь). Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов (рис. 5.14). После того как моносахаридные единицы соединятся друг с другом, их называют остатками . Таким образом, мальтоза состоит из двух остатков глюкозы.

Среди дисахаридов наиболее широко распространены мальтоза, лактоза и сахароза:

Глюкоза + Глюкоза = Мальтоза, Глюкоза + Галактоза = Лактоза, Глюкоза + Фруктоза = Сахароза

Мальтоза образуется из крахмала в процессе его переваривания (например, в организме животных или при прорастании семян) под действием ферментов, называемых амилазами. Расщепление мальтозы до глюкозы происходит под действием фермента, называемого мальтозой. Лактоза, или молочный сахар, содержится только в молоке. Сахароза, или тростниковый сахар, наиболее распространена в растениях. Здесь она в больших количествах транспортируется по флоэме. Иногда она откладывается в качестве запасного питательного вещества, так как метаболически она довольно инертна. Промышленным способом сахарозу получают из сахарного тростника или из сахарной свеклы; именно она и есть тот самый "сахар", который мы обычно покупаем в магазине.

Редуцирующие сахара

Все моносахариды и некоторые дисахариды, в том числе мальтоза и лактоза, относятся к группе редуцирующих (восстанавливающих) Сахаров. Сахароза - нередуцирующий сахар. Восстановительная способность Сахаров зависит у альдоз от активности альдегидной группы, а у кетоз от активности как кетогруппы, так и первичных спиртовых групп. У нередуцирующих Сахаров эти группы не могут вступать в какие-либо реакции, потому что здесь они участвуют в образовании гликозидной связи. Две обычные реакции на редуцирующие сахара - реакция Бенедикта и реакция Фелинга (разд. 5.8) - основаны на способности этих Сахаров восстанавливать ион двухвалентной меди до одновалентной. В обеих реакциях используется щелочной раствор сульфата меди(ΙΙ) (CuS0 4), который восстанавливается до нерастворимого оксида меди(Ι) (Cu 2 О).

Общие сведения.

Фруктоза, окисляясь, образует одноосновную арабоновую кислоту и формальдегид, которые при дальнейшем окислении дают соответственно триоксиглутаровую и муравьиную кислоты. При взаимодействии реактива Фелинга с редуцирующими сахарами (при нагревании) происходит разложение медного алкоголята сегнетовой соли:

Освобождающаяся окись меди быстро восстанавливается в закись

Выделяющийся при этой реакции кислород окисляет сахара. Следовательно, по количеству образовавшейся закиси меди можно рассчитать содержание редуцирующих сахаров в исследуемом материале.

Реактивы: а) реактив Фелинга (приготовление см. с. 202). 1 мл реактива должен соответствовать 0,05 г инвертного сахара (смеси равных количеств глюкозы и фруктозы). Методика установки титра реактива Фелинга описана ниже (см. с. 224); б) метиленовая синь (метиленовая голубая), 1%-ный раствор; в) натрий углекислый, 15%-ный раствор; г) уксуснокислый свинец раствор; д) фосфорнокислый натрий двузамещенный - , насыщенный раствор; е) соляная кислота, концентрированная едкий натр, раствор.

Приготовление вытяжки.

Из средней пробы продукта берут навеску, величина которой зависит от предполагаемого содержания сахаров в материале. При исследовании фруктов или ягод навеска составляет 15-50 г мезги (материала, измельченного на терке или мясорубке), варенья, повидла, джема - 7-8 г. Навеску количественно переносят в мерную колбу на 250 мл, смывая ее дистиллированной водой. Объем навески и воды в колбе не должен превышать 130-150 мл. Колбу встряхивают, затем определяют реакцию содержимого (с помощью нейтральной лакмусовой бумаги или универсального индикатора). При исследовании фруктов и ягод реакция вытяжки обычно бывает кислой, поэтому ее доводят до нейтральной (pH 7) осторожным добавлением 15%-ного раствора углекислого натрия (под контролем лакмуса или универсального индикатора), после чего колбу нагревают в течение 15-20 мин. на горячей водяной бане (80°С), часто встряхивая для перемешивания содержимого.

Примечание. При исследовании продуктов, содержащих крахмал (например, клубней картофеля, незрелых яблок и груш), водную вытяжку не нагревают на водяной бане, а сахара извлекают холодной водой в течение 1 ч, часто взбалтывая колбу.

Колбу охлаждают и к вытяжке добавляют 7-15 мл раствора уксуснокислого свинца, взбалтывают и ставят на 5-10 мин. (для осаждения белков, пигментов, дубильных веществ, также обладающих восстанавливающими свойствами). Появление прозрачного слоя жидкости над осадком свидетельствует о полноте осаждения. Если полнота

осаждения не была достигнута, в колбу добавляют (каплями) еще 1-5 мл раствора уксуснокислого свинца и взбалтывают. Для осаждения избытка уксуснокислого свинца в колбу приливают 18-20 мл насыщенного раствора двузамещенного фосфорнокислого натрия, взбалтывают и оставляют на 10-12 мин. для отстаивания. Проверяют полноту осаждения свинца, для чего по стенке колбы осторожно приливают 1-2 капли раствора фосфорнокислого натрия. Если в прозрачном слое жидкости над осадком уже не образуется мути, считают, что полнота осаждения достигнута. Колбу доливают до метки водой, взбалтывают и содержимое ее фильтруют через бумажный складчатый фильтр. В фильтрате (его называют «фильтрат А») определяют содержание редуцирующих сахаров. Надо так подобрать навеску продукта и разведение, чтобы концентрация сахаров в фильтрате А составляла .

Примечание. Быстрого осаждения белковых, красящих и дубильных веществ (так называемых органических несахаров) можно достигнуть обработкой вытяжки основным азотнокислым свинцом. К 100 мл вытяжки прибавляют 3-4 мл раствора едкого натра, взбалтывают и добавляют 4-6 мл раствора азотнокислого свинца. Осветление раствора происходит в течение 5-7 мин. Для освобождения от избытка свинца к вытяжке, нагретой до температуры 60° С, приливают 3-4 мл насыщенного раствора сернокислого натрия и нагревают на водяной бане при той же температуре 10 мин.

Определение редуцирующих сахаров (по Лэну и Эйнону).

В фильтрате А содержатся редуцирующие сахара (глюкоза, фруктоза и другие монозы, а также дисахариды, обладающие восстанавливающими свойствами, - мальтоза, лактоза и др.). Хотя сахароза тоже переходит в фильтрат, но для количественного определения ее необходимо подвергнуть гидролитическому расщеплению, инверсии (см. с. 222).

Метод определения редуцирующих сахаров основан на титровании реактива Фелинга сахарным раствором (фильтратом А) в присутствии метиленовой сини. Сахара, оставшиеся в небольшом избытке после восстановления окиси меди в закись, реагируют с метиленовой синью, восстанавливая ее в лейкосоединение.

В бюретку емкостью 50 мл (со стеклянным краном) наливают фильтрат А. В коническую колбу специальными

пипетками вносят по 5 мл растворов Фелинга I и II и вливают из бюретки 15-20 мл фильтрата А. Колбу ставят на электрическую плитку и нагревают (на асбестовой сетке) так, чтобы довести до кипения за 2 мин., после чего прибавляют 4-5 капель раствора метиленовой сини и кипятят точно 2 мин.

Примечание. Могут наблюдаться случаи, когда от прибавления метиленовой сини раствор в колбе не посинеет. Это свидетельствует о высокой концентрации редуцирующих сахаров в фильтрате А, и тогда надо его разбавить в два-три раза. Содержание сахаров в испытуемом растворе должно составлять примерно

Продолжая кипячение жидкости, ее титруют из бюретки фильтратом А до исчезновения синего окрашивания и появления оранжевого осадка закиси меди.

Титровать надо быстро, чтобы в сумме жидкость кипела не более 3 мин. На дотитровывание следует расходовать не более 2-3 мл испытуемого раствора. Если при этом расходуется более 3 мл фильтрата А, рекомендуется повторить определение, прибавив в колбу не 15, а 20 мл испытуемого раствора.

Первое титрование является ориентировочным. Приблизительно установив, сколько миллилитров фильтрата А расходуется на титрование 10 мл реактива Фелинга, проводят два-три точных определения.

где Т - титр реактива Фелинга (по инвертному сахару); н - навеска растительного материала в объеме испытуемого раствора, израсходованном на титрование 10 мл реактива Фелинга (суммируют количество миллилитров фильтрата А, прибавленных в колбу в самом начале определения и затем затраченных на дотитровывание)

Определение сахарозы.

Для определения содержания сахарозы в отдельной порции фильтрата А производят ее гидролитическое расщепление (инверсию). Условия инверсии подобраны так, что гидролизуется только одна сахароза.

В мерную колбу на 100 мл вносят 50 мл фильтрата А (см. с. 221), добавляют 5 мл концентрированной соляной кислоты и нагревают, часто взбалтывая, в течение 8 мин. на водяной бане, следя за тем, чтобы жидкость в колбе имела температуру 68-70° С (шарик термометра опущен в колбу). Затем колбу быстро охлаждают (под краном) до 20° С. Охлажденную жидкость нейтрализуют углекислым натрием или раствором едкого натра, контролируя этот процесс лакмусовой бумажкой, опущенной в колбу. Нейтрализованную жидкость доводят водой до метки и в случае необходимости фильтруют. Получают фильтрат Б, в котором содержится так называемый инвертный сахар - смесь равных частей глюкозы и фруктозы, освободившихся в результате гидролитического расщепления сахарозы. Содержание редуцирующих сахаров в фильтрате определяют по методу, описанному выше.

где - содержание соответственно редуцирующих сахаров и сахарозы.

Определение титра реактива Фелинга.

Титр реактива Фелинга определяют по химически чистой сахарозе.

Примечание. Для установки титра реактива можно также пользоваться сахаром-рафинадом, который предварительно выдерживают в эксикаторе (над хлористым кальцием) в течение 4-б суток.

На аналитических весах (с точностью до 0,0001 г) отвешивают 0,55 г сахарозы. Навеску переносят в мерную колбу на 250 мл и растворяют в 75 мл теплой воды.

К раствору прибавляют 4 мл концентрированной соляной кислоты и производят инверсию сахарозы. Все последующие операции описаны выше (см. «Определение сахарозы»). Определяют содержание редуцирующих сахаров в растворе.

Пример расчета. Навеска сахарозы - 0,55 г. Объем растворта инвертного сахара - 250 мл. На титрование 10 мл реактива Фелинга израсходовано 21,2 мл испытуемого раствора.

Титр реактива Фелинга (по инвертному сахару) рассчитывают по формуле

где н - навеска сахарозы, г, В - объем раствора инвертного сахара, израсходованный на титрование 10 мл реактива Фелинга (в нашем примере - 21,2 мл); а - объем раствора инвертного сахара в мерной колбе ( - коэффициент перевода сахарозы в инвертный сахар;


Одним из основных качественных показателей сиропа наряду с содержанием сухих веществ является присутствие в нем редуцирующих веществ.

Редуцирующими веществами сиропа называется часть сухих веществ, которая способна к реакции окисления солями поливалентных металлов. К такой реакции способны альдегидные и кетонные (карбонильные) группы различных Сахаров (глюкозы, фруктозы, мальтозы, лактозы и т. п.). Сахароза не содержит свободных карбонильных групп и не является редуцирующим сахаром.

В связи с тем что реакционная способность зависит от многих факторов и особенно от количества карбонильных групп по отношению к молекулярной массе сахара, а также оттого, что реакции окисления карбонильных групп поливалентными металлами не идут стехиометрически, эта способность у различных Сахаров не одинакова. Например, у редуцирующих дисахаридов мальтозы и лактозы она значительно меньше, чем у редуцирующих моносахаридов глюкозы и фруктозы.

Даже такие близкие по строению молекулы сахара, имеющие по одной карбонильной (альдегидной) группе в молекуле и одинаковое значение молекулярной массы, как мальтоза и лактоза, обладают несколько различной редуцирующей способностью. По этим причинам содержание редуцирующих веществ принято выражать условно в инвертном сахаре.

Обычно масса редуцирующих веществ, содержащихся в сиропе, в состав которого входит мальтоза или другие редуцирующие диса-хариды, несколько больше массы редуцирующих веществ, полученной в результате анализа и выраженной в инвертном сахаре. Только в частном случае, когда редуцирующие вещества сиропа состоят исключительно из равных количеств глюкозы и фруктозы, фактическое содержание их в сиропе соответствует результату анализа.

Для расчетов примем следующие обозначения:

G С -масса сахара, кг;

G п -масса патоки, кг;

G и -масса инвертного сиропа, кг;

а - доля сухих веществ сиропа, доли единицы;

а С, а п, а и - соответственно доля сухих веществ сахара, патоки и инвертного сахара (значение а с близко к единице и для стандартного сахара равно более 0,9985, поэтому в расчетах принимается равным единице);

k 2 - количество сухих веществ патоки, приходящихся на 1 кг сухих веществ сахара,

k 3 - количество сухих веществ инвертного сиропа, приходящихся на 1 кг сухих веществ сахара,

рв - доля редуцирующих веществ, заложенных с сырьем, в сухих веществах рецептурной смеси, сиропа и т. п.;

рв п и рв и - соответственно доля редуцирующих веществ патоки и инвертного сиропа.

Масса редуцирующих веществ, заложенных с сырьем,

рв = G п a п рв п + G и a и рв и. (1-3)

Доля редуцирующих веществ, заложенных с сырьем,

(1-4)

Подставив в уравнение (1-4) значения G п и G и из уравнений (1-1) и (1-2) и приняв а с = 1, получим

(1-5)

В технических расчетах часто требуется рассчитать значение k 3 . Расчет производят по следующей формуле:

(1-6)

Контроль производства. Сахар-песок проверяется на соответствие требованиям ГОСТа по содержанию воды и по цветности. Кроме того, органолептически проверяется запах, вкус и содержание механических примесей.

Патока проверяется на соответствие требованиям ГОСТа по содержанию сухих веществ, по цветности и кислотности. Содержание сухих веществ определяется рефрактометром с поправкой на содержащие редуцирующих веществ, которое определяется поляриметрическим методом.

В готовых сиропах контролируется содержание сухих и редуцирующих веществ. Содержание сухих веществ определяется ориентировочно - по температуре кипения и рефрактометром, содержание редуцирующих веществ - методом титрования щелочного раствора меди или фотоколориметрическим.